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There is studied the behavior of the jumps of derivatives of the displacements
on wave fronts of the weak discontinuity type and weak shocks being propagat-
ed on a nonlinear hyperelastic medium, There is presented the necessary in-
formation concemning the covariant differentiation with respect to time for the
tensors of different structure defined on a moving surface, as well as formulas
for the derivatives of certain tensor flelds and for the change in geometric di~
vergence along the rays,

Known ray methods of calculating the intensity of wave fronts {1] lead to a number
of identity relationships which are satisfied by the values of the discontinuities of the
derivatives satisfy on the bicharacteristics; these identities permit determination of
their subsequent values by means of the jumps in the derivatives of the displacements
given at the initial instant, and thereby permit the separation of the analysis of strong
or weak discontinuities from the investigation of the solution at the remaining points
of the space, However, the methods developed in [1] are essentially related to the
linearity of the problems, Recently, methods of investigating singular surfaces, based
on the use of compatibility relationships and equations significantly less sensitive to
nonlinearity [2, 3] have been used extensively; in studying weak discontinuities these
methods also permit obtaining the necessary identities on the bicharacteristics, In the
second scheme, however, the analysis of shocks in nonlinear media is not included
successfully since the fundamental role of the bicharacteristic is eliminated to a signifi-
cant extent in this case. On the other hand, according to the results in [4, 9], ray re-
presentations turn out to be quite useful in the investigation of weak shocks in fluids,
where the nonlinear formulation resuits in substantially different damping laws as com-
paredto.the acoustic laws. The method of investigating singular surfaces used in this paper
is quite general and consists of using an infinite set of partial differential equations (the
governing system) obtained by using different compatibility relations. In the linear
case the equations of the goveming system are equivalent to the transport formulas ach-
ieved by known ray methods, The governing system can be used to study different kinds
of singular surfaces being propagated in different materials, For "shock” singularities
of linear hyperbolic problems and for weak discontinuities of nonlinear problems, the
governing system turns out to be recursive, i.e., the fist M equations of this system
completely describe the change in the fimt M — 1 nonzero vectors of the discontinu-
ity, which permits finding these vectors in tum, In the case of shocksin a nonlinearly
elastic medium, the recursiveness of the governing system is violated it is again restor-
ed, however, in each order of the successive approximations when finding the solution
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Method of calculating the wave front intensity 959

of the goveming system in the form of a series in 2 small parameter characterizing
the scale of the weak shock intensity at the initial instant. Relationships corresponding
to the first approximation differ significantly from the acoustic relations (1, 10], but
agree completely with those obtained earlier for weak shocks in a fluid, A different
method of studying weak shocks, on the basis of using an infinite system of identities
has recently been proposed in [11].

The crux of the proposed approach is demonstrated in Sect, 1 by the simplest ex~
ample of a model gasdynamics equation (it should however be kept in mind that al-
though the analysis of the model equation yields the basic features of the method and
the structure of the equations which occur, two aspects of the general situation are lost
here: fiistly, the one-dimensionality of the problem makes the ray construction trivial,
and secondly, in the case of one dependent variable the singularities in the formulation
of the initial data for the governing system are not seen). The equation of motion of
a hyperelastic body are presented in Sect. 2 in components referred to the initial con-
figuration; there is a derivation in [12], for instance, from which certain notation is
also borrowed. The necessary information about covariant differentiation with respect
to time, of tensors of different construction defined on the moving surface is presented
in Sect, 8; this formal apparatus tums out to be quite effective in simplifying the awk-
ward equations governing the system. One of the stages in investigating weak shocks
by means of the scheme proposed in this paper tums out to be equivalent to studying
the propagation of weak discontinuities; the treatment of this latter problem, however,
given in [2, 3] tums out to be inadequate for the purposes stated (particularly in the
part concerning the introduction of rays); in this connection, a new examination of
the problem of a weak discontinuity is given in Sects, 4 and 5. Moreover, the study
of this latter problem specifies the form of the initial conditionsfor the goveming system
and the method introducing the ray coordinate system in the shock case, Weak shock
propagation in the unperturbed domain of a hyperelastic body is examined in Sect, 6,
Finally, refinements of the preceding results (concerning waves with an isolated eigen-
value of the acoustic tensor), which are needed to analyze fronts of transverse type
being propagated in an undeformed domain of an isotropic nonlinearly elastic body are
presented in Sect, 7,

1, The model gasdynamics problem is to solve the Cauchy problem for first order

partial differential equations with two independent variables z, ¢ and one dependent
variable v (z, t)

il (z 1) + f (v (z, t) _ =0

(L1

The condition

¢ vkt = [f (v)I* (1.2)
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where [ ' denotes the jump in the guantity and ¢ is the rate of displacement
of the discontinuity, should be satisfied when finding piecewise-continuous solutions
at points of the discontinuity,

Let the law of discontinuity motion be  z = z (t), where z (f) is a sufficien-
tly smooth function. Let us assume that the behavior of the solution v (z, ) and its
derivatives of the necessary order in the left- and right-sided semicircles of the dis~
continuity satisfy the conditions for applicability of the Hadamard lemma [13}; we
shall henceforth call such discontinuities regular., The limit value of the discontinu-
ous quantity will be marked by a plus (minus) sign if it approaches the discontinuity
from the right (left); these limit values are clearly functions of just one independent
variable, the time ¢, for imtance. In conformity with the Hadamard lemma, we
have

d dv(zt) My (z, 1) 8"y (2, 1) L3
W&z...&zﬁ_c(t) 93...0z, 9t0z...0z, (1.3)

Subtracting the relationship (1.3) with plus and minus signs term by term, we arrive
at the compatibility relationships for the discontinnities

i+l o odw (B
[a%az"v.(.'z'i"“‘;i] = —g— — ¢ () 1 () (1.4)

at z, +
%o (t) = [V (2, t)}i: % (t) = [ @:}'{' X 2}; }

We proceed as follows to obtain the governing system. We obtain the first equat-
ion by equating the jump on the discontinuity in the left side of (1. 1) to zero and re-
placing [9v (z, t) / 3t]* according to the fist (i = 0) ofthe compatibility relation-
ships (1.4), To obtain the i -th equation of the goveming system, the same proced-
ure should be applied to the equation occurring to an i -tuple differentiation of (1. 1)
with respect to z, hence [9!+1p / 3¢dz...0z]* should be replaced according to (1.4).
Expressing the limit values on the left by using %, and the limit values on the right,
we obtain

B o — f (0, — o)l 1 (0, —%0) = )] 5= = (1.5)

, a
*1 1 — f (v, — %o)] + Eo (%0, Vs 6z+>
;ix., . » e e - ) a1+]v
dzz' = Riuy [€ — f (v, — %) + E‘(M’ G F R PN

.................

In the case of a shock discontinuity the system (1, 5) is supplemented by the relat-
ionship resulting from (1.2)
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exy + f (Uq- - ”‘e) - f (U+) =0 (1.6)
According to the definition of the velocity of the discontinuity, we have

dz (8)/dt = ¢ (L7

The relationships (1, 5) —(1.7) form the goveming system which the function %
(£), z (¢), ¢ () satisfy, We supplement this system by the initial conditions
%y (t) = 0;, 2 (0) = e
Remark., 1°. Another (equivalent) system can be obtained in place of the
governing system {1, 5) ~(1,7) by using an  i~-tuple differentiation with respect to
tysay, in the i -th equation. Additional compatibility relationships for the discont-
inuities of the derivatives would hence be required,
2° Let us assume that the functions vs,. .., d%/dz ... 6z,, ... are known as func-
tions of ¢ , and let us examine a  j -th order weak discontinuity, In this case the
functions  Xo, %y,. . ., %;; vanish by definition, and %+ 0(j >1). Equation
(1.6) and the first j —- 1 equations (1. 5) are hence satisfied automatically, and ¢ =
f (v4) follows from the /~th equation, The system (1.5) is recursive in nature,i, e.,
any of the M first equations are closed relative to their unknowns, which affords a
possibility of solving them altemately, from top to bottom. In this case the theory of
ordinary differential equations substantially assures the uniqueness of the solution of the
goveming system, The recumive nature of the governing system is conserved for dis-
continuities of the shock type (% = 0) when the model equation islinear (i, e., the
function 7/ is linear), The validity of using several of the first equations of the govern-
ing system is alsc evident from the discussion presented, even if utilization of the re-
maining equations is impossible because of the inadequacy of the smoothness of the
function / or the inadequate regularity of the discontinuity, In this sense, the method
under consideration for the investigation of singular surfaces is not related essentially
to the analyticity conditions,
8°. The functions :z (1), vy, ..., 8w/ dz. .. 24, ... arenotordinarily known
in advance as functions of time, However, a slight modification permits use of the
governing system in the following situation of practical importance, Let the location
of the discontinuity and the value of the jumps %; as well as the fact that the solution
ahead of the discontinuity is a part of the everywhere-smooth solution +*(z, 1) given
in advance, be known at the initial time (for instance, the function o* (2, 2) = 0)
corresponds to wave propagation in the unperturbed domain). Determine the location
of the wave z(¢) and the functions #; (!). The substitution v, == v* (2, 8), 90 (3,
1)/ 924 = 8v* (3,8) / 8z » etc., should be performed in the goveming system in exam-
ining such a problem,
4°. Just because the equations of the goveming system are nonlinear, their solutions
generally exist only in a bounded time interval; however, even within the domain of
existence of the solutions, the initial hypotheses of applicability of the system can be
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violated (for instance, if the weak discontinuity under examination is overtaken by a
shock, the conditions of applicability of the Hadamard lemma are violated).

It can be seen that the goveming system corresponding to a shock discontinuity and
a nonlinear function f tums out to be non-recursive, The uniqueness of the solution
of the Cauchy problem for the governing system is hence violated if no other addition-
al conditions are imposed. Indeed, evolution of the shock depends substantially on the
state behind the front [5]. Since only the constants a; enter in the Cauchy problem
out of all the infarmation about the state behind the front, it is sufficient to select two
different functions with identical values @; in order to see the nomuniqueness of the
solution.

However, it is convenient to use the governing system in the investigation of weak
shocks, We call a shock weak if the conditions

3(00) =12z, %(0)=e z0)=a4a,..,% 0 =ay,.. (L8)

are satisfied at the initial time and the functions z (¢), ¢ (£}, xn (¢) can be approx-
imated by segments of series satisfying the goveming system and the initial data (1.8)

e Q (1.9)
20) = A ) )= 2 el

Ho(t) = D) eP%op(t), %n(t) = D) e®unp(t) for N >1
g1 p=0

Substituting the series (1. 9) into (1. 5) —(1.8), it can be noted that the governing
system is recurrent in each order in & . This assures uniqueness of the series (1.8).

Remark 5°. Itcanbe seen that the functions 2o (2), co (¢), % (t) agree with
the corresponding functions describing propagation of a weak fimst-order discontinuity,

Let us examine a weak shock being propagated in an unperturbed domain. In this
case the functions %o ; (£) and ;o (f) describing the intensity of the discontinu-
ity v and 9v/9z in the lowest approximation in ¢ have the form

= ! .
%o1 (t) = Vi *10(6) = TP Gyan (1.10)

It follows from (1. 10) that the coefficients of the series (1,9) become infinite for
" (0) a; >0 in the finite time 1/f" (O)a; .

In order to obtain a certain idea concemning how the unique solution of the govern-
ing system of the form (1, 9) cormesponds to the state behind the shock, let us consider
the function f = v%/2 and the initial conditions 2 (0) = 0 and %, (0) = &
(according to the Germain —Badet stability conditions (14), only discontinuities for
which &< 0 should be considered), %, (0) = a, and %y (0) =0 for N >

2. In this case, the series (1. 9) is successfully defined completely, in particular
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e
{—aoyt

ay

% (t) = » #a(t)= T @) =0 fa N>2 (1.1

It can be confirmed by the method of characteristics that the state behind the wave
front at the initial time v (2, 0) =—e—a,z comesponds to the solution (1. 11),
where only the initial state in the domain — efa; <{ z < 0 affects the evolution
of the shock for a; <C 0  (if the shock outrunning that under consideration certainly
does not leave the domain 2z < ——e/a,;t_bzﬁmction — 8 ~ g,z 1isa Taylor
series determined by the coefficients v/ 0z...82_ = — u; (0). As follows
from (1.11), for @; <C 0 the functions %o (#) and %, (1) damp to zero (accord-
ing to (1,10) the first members of the series (1. 9) for the arbitrary function f and any
initial data satisfying the condition /" (0) @, <C 0) have the same damping nature).
The asymptotic law (as -~ 0o ) of damping of the shock intensity %, ~ const

V't reslts from (1.11), As has been shown in [15], this asymptotic damping law
is quite universal, as also partly results from (1,10}, (1.11) and the fact that any
profile in the domain ~ e/a, <7 z < 0 is almost linear for sufficiently small &
and fixed a, < 0.

2. Atany time ¢ the Lagrange coordinates z!, 23, #8 correspond to a point
Z of a contimuous body. In the initial state the radfus-vector x (z) differentiable

the necessary number of times, the metric tensor %5 (z), 2/ (r)  which is used
to raise and lower the Latin indices, the bases  x, (z) = dx / 82', x* = 1V,
all correspond to the point 2z . The covariant derivative on the basis of the metric
tensor z;; is denoted by a Latin index after the vertical bar, In the deformed state,
the radius vector X (z,#) =x+u , where u(z ) = u' (z,8)x; is
the displacement vector, corresponds to the point 2.

If a hyperelastic body is characterized by a potential @ (z, uy;) and the dens-
ity in the initial state = m (z), then the following relationships should be satisfied
in the domain of twice continuously differentiable displacements (for simplicity it is
assumed that there are no mass forces)

a1 o (2.1
"o = (55115 )u‘
If a singular surface is propagated in the body
=z, i=123 a=1,2 (2.2)

on which the displacements are continuous and their derivatives undergo a dizscontinu-
ity, then the conditions
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o9 _7* ot T+ 2.3
[t e L= .

should be satisfied because of the integral law of momentum conservation,

Without deriving the relationships (2, 3), let us just note that n; (§, £) are com-
ponents of the unit normal n in the initial basis, and ¢ (§, ) is the velocity in
the direction of this normal which characterizes a murface with the radius-vector

EE)=x@E 1) (2.4)

which should be distinguished from the real surface of the discontimuity which has the
radjus-vector = ) =X (z (% 1), t). The geometric and kinematic charact-
eristics of both surfaces are closely related, however, Moreover, thesesurfacescolncide
in the important particular case when the material on one side of the front is at rest.

The functions m and @, which define the specific hyperelastic model, are asmum-~
ed continuous together with all the derivatives later encountered,

3. The metric tensor Eqq (8, ), §oP (8, ¢) which is used to raise and lower
the Greek indices as well as to perform covariant differentiation denoted by a Greek
index after a semicolon, comesponds to the surface (2,4), Let us define the covariant
differentiation with respect to time of mixed tensors on a moving surface by the follow-
ing relationships:

ST (51 ot S 3.1
ng — = oiﬂ — 0T % y + ata' T % —

it Imi - @- [+2 i-9- v {1t
20 T+ VT — vl Tty

3z (E, 1)

=2, eEn=vE 0t dal) = =53

Here ), (z) isan affinity of the second kind of the initial configuration. The

opexation (3. 1) is covariant relative to the natural mbstitation 2 = z* (z'), &' =

Eo* (22, ¢)  for the consideration of a moving surface [16]. In the general case the
definition (3. 1) neither agrees with the Thomas [17] definition of the 8/6t derivat-
ive nor with the Trucsdell —Tupin definition [16]. However, the operation (3.1) is
equivalent to the Thomas derivative for tensors having only Latin indices, and is equiv-
alent to the Truesdell —Tupin derivative for tensors having only Greek indices, and
tensors having only Latin indices which are "contractions”, The tensor T (. 0)
is a "contraction” of the tensor T'; (z,2) if T!7 (8, 8) = T (z (§, 9), t).
It follows from the above that the operation (3. 1) conserves the relationship obtained
earlier (16,17}
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61'?‘ ATt (z, 1y (3.2
ot o + enf T (a, t)*

bz, 88 brit gk 0

& & & &t

8n, } OE, . spoh
= — i, = — 2ebop,  —3— = 20k

Here Ugs (8, 8) = Ia. n; is the tensor of the second quadratic form of the
surface (2.4). Using the definition (3. 1), we obtain

66“ 6eaﬁ © 680‘(,‘ ® (3. 3)
= = (L'n‘);a, Tf = 0» 5t = Cb(l)saﬂ? Y = cbmgﬂﬂ

*x
o8& e o (),
= = _61— == (N, YR 0, 3 (Cn),a

Here ¢€4: (E, #) is the discriminant tensor of the surface (2. 4).

It can be confirmed that the Leibnitz formula for the derivative of a product is
valid for the operation (3.1), and commutation of differentiation and convolution is
also possible,

Henceforth, for a special selection of the coordinate system to the object (2. 4)
will be considered as a two-parameter set of rays, each of which isdefined by the
relationship (2,4) for fixed Ea . The combination DF!(E, t)/Dt = 8F' /6t +

UF’, agrees with the absolute derivative of the tensor F* (E, t) along the ray.
The quantity J (%, ) = | b (5, 8)]"/|Ena | (& to)|"™ is called the geo-
metric divergence; the following relationship is valid

AT (¢, 1) 3.4

——= = J (Vg — cb)

The definition (3, 1) conserves the form of the compatibility relationships [16 —
18], Discontinuities in the derivatives of the displacement field u' (z, ) canbe
expressed in terms of the geometric and kinematic characteristics of the singular sur-
face, as well as in terms of vectors of the discontinuity iy (8, ¢) = [ulp,...y)?

.m'N (it is clear that the numbering index N of the discontinuity vector is
not temodal) and their derivatives, In particular, we have on the surface of discont-
imuity of the first derivatives

i LT+ .
[uly)l = hflnh [%;t—]_ = —hiye (3. 5)
B

i + i PR . .
[u.ljk]~ = hfznjnk + Zh.fl;an(j.tma.' — h’flbjks bjk = baﬂ‘c]az'". (8. 6)
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g 7 i 611‘:1 i "
"Bt u'b‘]__ = — h.acn; + wyatChe (h.,c);a:r,«.
a’ui + i (5;11' .

= 2 9p oLl _ pi O
[““‘i’a ]_ hige? — 2¢ 5 hiy %

If derivatives starting with the second order undergo a discontinuity on the surface
(2.4), then the following compatibflity relationships hold:

: s P 1 +

{u‘.m]ﬁ == hfgn;nk, [-5;- u.;,-]_
i i i .

[ ] = hisnimen, + 3k gangmis. — 3hisnba)

ot T+ an! .
ik i . . i
—lx ]_ = — hgen g + —=2 ning — 2 (hlge)a nTiy + hiachi

. i1+ . 3,7
D k?gﬂn", {‘%ﬁ;“} = h-fgcz ( )

(3.8

Fat T 8k’ ; . i, &
= i ]- = hise’n; — 2 "E?' n; + (Blgc?)q ;% — h.snjf'g;-
Cond T ; 5 Oh de i
.’5?5']- = — ke’ + 3¢t =% + 3¢ 5 iy

Using the Thomas algorithm [17], the following two equalities can be obtained
which partially expand the structure of the compatibility relationships for discontinui-
ties of the higher derivatives

i
[-‘%;- ufm,,,w]: . onN =Ry et — 2c-9-{‘-15’%ﬁ— - (3.9
B g + L (W . .., Bl
{uf;;;m..'m nn...n"N = hf‘vﬂnjnk 4+ thml;ax(ﬁnk, —
hv:'Nﬂbjk ~+ M;k (h{g, eeny hfn)

Here L', M}, are differential operations of their arguments, which also dep-
end on the goemetric and kinematic characteristics of the surface of discontinuity.
The author gave an expanded analysis of the opemtion (3. 1) eariter (*).

4, Letus tum to the construction of the goveming system of equations correspond-
ing to a singular surface in an elastic medium. To obtain the fipt equation, the jump
of both parts on the singular surface (2. 1) should be equated, and then by using the
compatibility relationships mentioned, the jumps in all the quantities should be ex-
pressed in terms of the discontinuity vector and the limit values of the derivatives of

*) Grinfel'd, M.A,, The &8/8¢ derivative and its properties, VINITI Dep. No,
1255 —~176, 1976,
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the solution from one side of the surface of discontinuity, To obtain the (N < 1)-th
equation, the same procedure must be followed with an equation obtained from (2, 1)
by differentiation with respect to g™, ..., 2’V after which the result is convoluted
with  n7, ..., n'N. This system should be supplemented by (2,3) treated in an
analogous manner in examining a shock,

Let us show by induction that if the kinematics of the surface of weak discontinuity

(h!y = 0), the limit values of the derivatives of the solution u' (z, t) onone

side of the wave (see Remark 3°) and the values of the vectos hly, ..., hly are
known at the initial instant, then the first A/ equations of the goveming system will
permit determination of these vectors in a certain time interval, Following the Re-~
mark 2°, we designate this property the recurrence of the goveming system although
the first- M equations are already not closed relative to the vectors they defined (the
vector hip,,) also enters). An equivalent result was first obtained in[2, 3]in another
interpretation,

By using the first relationship (3. 7), the first equation of the goveming system can
be reduced to the following form

(meiz* — Q%) hyy = 0, Q% = ¢¥nyn, (4.1
. B (2, upyn )

In the interest of reducing the writing, the arguments of the functions in the govern-
ing system equations are not written down; in this connection, it should be kept in
mind that in the long man  §¢ and { are the independent variables in these equations,
for instance @UF = lim ¢'* (2, Upmm (7, 2)) in(4. 1) as z'— 2} (L, 1),

Since hy, 7= 0 on the acceleration wave (the proof is carried out for a weak
discontinuity of oxder 2, for definiteness), this vector is the nontrivial solution of
(4.1)and ¢? (E, 2) comesponds to one of the eigenvalues of this system; we differen-
tiate the other two eigenvalues by the value of the subscript I ; the realness of the
eigenvalues is assured by the symmetry of the acoustic tensor  Q'F.

Let us assume that (& )+ CL (%, t). The eigenvectors ¢; (E, ©),

e;1, (§, t)corespond to the eigenvalues ¢? and ¢;2 , If all the eigenvalues are
distinct, we have

xife,eﬁ, == 0, x‘jeuen = Q (4.2)

If ¢,® = ¢,?, then the selection of the eigenvectors e;;, (&, t) is subject
to the second of conditions (4.2). Considering the kinematics of the singular surface,
and the solution on one side of it, known, in principle the functions  ¢3 (¢, ),

e ®(E, 1), e; (E. 1), ey (E, t) should be comsidered known, Therefore, the deter-
mination of the vector hy, (&, £) reduces to determining its modutus  k (&, )
which can be done by using the second equation of the governing system. Convolut-
ing the second equation with  ¢; (§, £), after awkward manipulations using the
properties of the §/8t derivative (Sect. 3), it can be reduced to the form

i 1n mc®
2(‘%?'*'%‘? teerai’ h,a)+h[_cb:+6nm 4 5
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1 ikl - 1 .
( me ¢ ! eie"nfxi ‘);a + me Wukleieknfxl{? (hl mcs)?u -
= ¢ ™een,ny ————m——’"'a"; - e 2yeh? =
izkimn
¢ 0% (=, Yntq )

a— - p—— l e fz i t —-_~
% —3 eeemin N, (p”k mn (x, H.vtrz) 3,(_3 _a,,way :
iJ min

The plus sign denotes the limit value of the appropriate discontinuous quantity on
that side of the singular surface where the motion is asumed known, The condition
¢ (§, t) > 0 , which can always be achieved because of the selection of the normal
direction, was used in obtaining (4.3).
No specific coordinate system on the singuiar surface has yet been set. Let us do
this, namely, let us require that the relationship

i >
@) = 80 o (6 0) = o ¢ M eengai (4.9

be satisfied in the coordinate system to be set. We shall call such a coordinate system
on the surface a ray system (the question of its existeace is examined in Sect, 5).

By using the properties of the §/8¢ derivative and the relations (3.4), (4.4), the
equation (4, 3) in the ray coordinate system can be reduced to the following:

I (E, 1) dlam(z G ) E. 0T G (4.5)
2= th [ ot

2 g Bt (3, 1) )
E (pﬂ‘k ""‘eieknjn, ~‘15?.—: -2 ,(Chz == ()

This is an ordinary differential equation containing £* as a parameter, which will
permit determination of A (€, ) in a certain time interval by means of the initial

data k (&, £o). _
Now, let us assume that the vectoss J'y have already been determined for N

< R . We shall seek the vector hip,, (¢, t) in the following form

Kaa® 0 =b®0¢ GO+ 30604 ED .9

By using the compatibilityrelations (3.9), the goveming system equation with the
number R can be reduced to the following

(me2z™® — Q"Yhxpsy + D* (uggy - « 1 hxr) =0 (4.7
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Here D, is a differential operation with respect to §%, £ of their arguments
including also the geometric and kinematic characteristics of the surface of discontinu-
ity and the limit values of the derivatives of the displacement on one side, which is a
known function of £ and ¢ by the inductive assumption, Convoluting (4.7) with

€;;. and using (4.2) and (4.6), we obtain

1
b B, 1) = wE—h eiLD (b, - . ., Bxr)

There remains to determine b (§, £) . To do this we use the goveming system
equation with number R -+ 1, which is reduced to

Ki
(meta® — Q) hagg = 2me 2L 4 .9

o (2% + 2i°n) hkpars o+ FF By -« -y Baman)

where F' is a differential operation of the first R — 1 arguments, and an algebraic
operation of the last, Let us convolute (4.8) with ¢, ; in the ray coordinate system
the equation obtained will be reduced to the form

ob (5, 2) /ot =G (b, & 1) (4.9)

Here & is the customary function of its arguments, Therefore, (4, 9) is an ordin-
ary differential equation contajning fo as a parameter and permitting the determi-
nation of h(%,£)in a certain time interval by means of the initial data. The induction
is completed,

Remark 6°, Itis evident from the discussion presented that at the initial inst-
ant it is sufficient to know not the vectors of the discontinuity Ay (£, &) but just
their components  A;y (§, 2) <ef(§, t,).

The proof presented for the recurrence of the governing system goes over without
substantial changes to the case of higher order weak discontinuities and to the case of
"shock” discontinuities of linear equations,

5. The kinematics of the surface of weak discontinuity was assumed known in
Sect. 4. A procedure to determine the functions &' = z' (§%,¢) which yield
the location of the wave in a certain time interval by means of the initial data, is
considered below,

We start the description of the motion of the surface of weak discontinuity with the
question of the existence of a ray coordinate system thereon, i.e.,a coordinate system
in which condition (4, 4) is satisfied. Let us assume that the surface of discontinuity
is given in a certain time interval {; <{ ¢ <C {; by using continuously differentiable
functions z* = z¥(}% t) , where the matrix of the metric tensor || &y (£, 2) ||
is nondegenerate.

It can be shown that for a certain time interval %, <l £ <C ¢y specific continuous-
ly differential functions £ = Po (£, ) (having the inverses &% = §o' (%, ¢))
exist uniquely so that  E (Eo’ £y = EV B2 (R0’ f,) == E2', and the coordinate
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system on the surface go wiu be a ray system, i.e,, the relationships (4. 4) will be
satisfied for the functions ' (§%, &) = 2¥'(8 (&, 8), ) .

In fact, the objects in the left and right sides of (4. 4) are defined correctly for
the functions <z (', &) (it is true that the relation (4.4) is not generally satisfied
for them), Let % (§',#) and b (E', #) denote these objects, respectively. Upon
introducing new mutually one-to-one coordinates on the surface §* = f= (%', 1),

E = £+ (§,t) the objects a®(E,#) and b* (%, t) defined by the same rules
wﬂl be related to  a* (', ) and po’' (L', #) by the relations

eEH=a @ ENEEGNN+ IS 8@ e oy

» & s
P =t EGRONEER G, 0 BE= 250
For the coordinate system o to be a ray system, the objects @* and >
should agree; by using (5. 1) and going over to the independent variables §%', this
condition can be written in the form of a system of equations

ng‘_s.a__.tz o (,8) — b (¥, ¢)] Z8rt) aﬁaga )] (5.2)

Let us supplement this dissociating system of equations with the initial conditions

EELE. ) =8, BE,® 0=t (5.8)

As follows from the general theory [19], the problem (5.2), (5.3) has a unique

solution, The determinant | §a® (§',)| defined by. this solution is continnous in
! and equals one for ¢ =1, . Then for any point §%' there is a neighborhood
and a time interval such that the relationships (o = §o (&', {) will be solvable for

}o. Inverting the discussion, we see that the functions £* (', ¢) actually
define the ray coordinate system.

We call each space line obtained for a fixed coordinate §* in the ray equation
of the surface &' = z' (£%, ) a ray (see Sect.3). In some cases, the rays comes-
ponding to a surface of weak discontinuity can be determined without reference to the
solution of the problem (5.2), (5.3), but by using a certain system of ordinary differ-
ential equations,

We determine the functions s (%, 7, £) and dy (z, n, £) for this solution u'.
(z, t) of (2.1) as the comesponding value and the normalized eigenvector of the
Linear system of equations

[m (2)*2™% (2) — ¢ (2, tmin (2, D))nym)dy =0 (5.9

These functions characterize the posible (but certainly not existing) weak discont-
inuities, On the surface where the second derivatives of the displacement undergo a
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discontinuity, the first derivatives of the functions s and dj will undergo discont-
inuity, Let us make the additional assumption that the branch of s (z, n, ) corres-
ponding to the weak discontinuity under investigation is isolated from the other branch-
es to the whole range of the independent variables (henceforth, only this branch will
be understood as § ) in this case the following relationships, related to the "lemma

on bicharacteristic directions™ [19] are valid

ukl

as 1 (z, Umin (=, 1)) . 2 9m 5.5
Wt Ry 6P
ds

1 o
T = e ¢ n,d;dy

To obtain (5.5), we should substitute s=s(z, n, ) and @, = dy(z, n, 1) in-
to(5.4), differentiate the identity obtained with respect to the appropriate argument
and convolute the result with d; (z, n, £)- (it should be kept in mind that the identity
of the relation being differentiated is generally violated upon replacing z%m;n; by
one, which it will be convenient to do in analyzing fluids and other isotropic media,
However, this can involve violation of the relation (5. §); in this case, small changes
in the reasoning are needed, which we do not examine),

Let us differentiate the equation of the surface of weak discontinuity the field of
its unit normals with respect to time in the ray coordinate system (for the sake of
brevity, the subsequent computations in the paper are performed in the Lagrange coor-
dinate system, which is affine in the initial configuration)

oz (&, az% (g, .
za(‘& t) __ 9= (ﬁ £) (@522 + nPn,) = v%a%, + cnP = (5. 6)
3 (z, n,
'n'i;? Veley ‘k"izza o+ cn? = _B%f.fl
on,, (E, t) on
Pat_=—3-tg+v”'np;a‘——caxp +a zqnp.a_

a L hd ]
— L (87 —ny)
+

Since the derivatives of the function s (z, n, t) undergo a discontinuity on the
wave front, the appropriate limit value is explicitly indicated by a plus, The relat-
ions

¢ (Ea t) =S (‘t (E! t)’ n (§7 t)vt)sei (§9 t) = di (z (E’ t)’ n (E! t)1 t) (5.7)
s (z, n, t)

p- L p
ZiaZq. = 8 — n¥n,, o

n; = s(z, n,t)

were used to obtain (5. 6).
According to Sect, 3 and the definition of a ray, (5.6) and (5, 7) characterize
the change in the functions z”, n, along the rays. Construction of the domain of



912 M. A. Grinfel'd

continuous differentiability of the function s (z, 1, ) does not generally permit
using these equations to construct the rays and the surface of discontinuity, However,
such a possibility is manifest if the solution before the discontinuity is given as a
part of some twice continuously-differentiable solution defined in the whole space
(see Remark 3°),

6. By analogy with (4. 4), we define the ray coordinate system on the surface in
the shock case by the condition

- h
1 .
mev™ (8, t) = mei";xz%ueu» &5 = T;;%T (6.1
3

If the material in front of the shock fs in the undeformed state, then by using
(3. 5) —(3. 8), the relationship (2.3), the first two equations of the governing system,
and the relationship (6. 1), can be reduced to the following:

j j i g 09 uy) (6,2
[9¥ (2, — Bgary) — @Y (2, 0)1 ny + me®hiy =0, oY = __73.‘.‘.&.’,&

. 8k ;
[me™® — @H*! (2, — hpanig) nym] hyg — 2me —gt- —m -%;- By +

i . aq,ij (3, — By n }
¢ (2, — ki) (absy — 2hm; alis®hy”) + _—_'5;?_3_}— =0

. i 8h!
[me2z™® — @¥* (2, — hpng) njny] hys — 2me ""5';‘ -

m-S Ky 4 9 (2, — hoana) (habiy — e o) +

i 37kt
asw (z’—hmﬂ'q) r aq) (z'“hpxng) h ¥, 2
— 7, 4 By oZ10) —
PP n Py (Pxamy + Bz a1)
CL

9z
onl : .
" (Kige? — 26— — i) — 975 (2, — Fan) (uansm +
th_n a."(izif-‘ — b1 bj;) (Bmaltn + homy; a"’;ﬁ) =0

* , ¢ . j 7
me ﬁi—(égt__)_ zi% = % (z, — hpintg) n(Z1y-€nnr1

o9 2 (Bxansmy -+ 2hyy; oty — Bpbi) n7 -

We supplement the governing system by the initial conditions (see Remark 6°)

Ry (8, to) €1 (§, to) = &4y (B) (6.3)
Ko (B ) en (B fo) = An (), N> 2 2 (B t) = 2 B
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We call a shock weak if the function describing it can be approximated by segments
of the following series (satisfying the governing system with the initial conditions (6. 3)):

(1) =§‘, Zpt)er, KyE)= 3 Ran(E 1)er (6.4)
=0 p=1

Rin (&)= D hinp (& t)er, N>2
p=0

The form of the series (6.4) is selected in a computation such that the discontinu-
ity in the first derivatives would tend to zero as & —- (0 while the discontinuities in
the higher order derivatives remain finite, Substituting the series(6, 4)into the govern-
ing system equations, it can be seen that this system turns out to be recurrent in the
sense of Sect, 4 in each order in e ., Comparing terms in identical powers in &
in (6.2), we find: 1) the vectors k;,;, h;qo are null vectors of the matrix A% =

m (o) co22** — (pi"‘l (z9, 0) njony, (objects referring to the surface =
z' o (E, t)) are marked with the zero), 2) the equations which the functions z',
Cor Mgy Pigo Satisfy agree with the equations of Sect, 4 describing acceleration wave
propagation in the rest domain (see Remark 5°).

Let us assume that the isolated eigenvalue ¢,? with the unit normalized mull-
vector of the matrix A% — r, (E, t) corresponds to the wave under consideration,
Then we have hy 54 (8, £) =k (8, &) ¢ (&, 8), hin(E) = (B, ) 7y (£, 2).

The following equations result for the intensities h (E,?) and 7 (§,¢) from
the governing system:

8
9 3‘1(& 1) +1 alnm(’o)az'o o(Es ) — Ca‘V(E,, t)h‘f] =0
v(E t) = m @HFI™™ (2, 0) RjoR o RngT i m

NE t) = 41 (), 2GE to) = 4:(F)

which permit finding the functions 1 and £ , and describing the change in the
jumps in the first and second derivatives of the displacement in a lower approximation
in e,

Remark 7° Equations(6,5) admit an integral since

L __ B
dt ném (z)cefy 0

It can be shown that this integral exists for an arbitrary state of the medium ahead
of the front and, in combination with (4. 5), permits a study of the behavior of weak
shocks even in this case,

Let us consider a plane, weak shock being propagated in the rest domain of a
homogeneous medium, In this case, we find from (6. 5)

_ Ay B Ay
N VT e Gmtg) ' 1T cvAy(t—to) (6.6)




974 M, A, Grinfel'd

which can be converted into a more graphic form in complete analogy with (1, 10).
To do this, we let o (§, #) denote the jump in density of the surface force during
passage through the wave front. To the accuracy of second order termsin ¢ , we
have ¢ (E, 0= (E 0r (¢ onthe weak shock surface, where s (§,1) = eq(z,

) m(z)) e?, v (, ) = r! (§, 1) x; Having defined the shock length by the formula
LE t)=|hy(E |/1ha(k, )] , weobtain LE =AE & =en/k tosecond
order accuracy in € in the case of a weak shock,

The relationships (6, 6) can be written in terms of o and A

) b t/a — -3y
A“)”‘Aol.i"i“%;@} . G(t)wﬁg{i%‘%ﬁ] (6.7)

Ao = A (ty), 0, = 0 (2)

which agree, substantially, with the forrulas describing weak shocks in a fluid [7],
For sufficiently large ¢ and v =0 , the following asymptotic intensity damping
laws can be obtained from (6, 7) and analogous relationships for cylindrical and spher-
ical waves {for plane, cylindrical, and spherical waves, respectively):

o ~ const t™/%, ¢ ~ const £/*, 6 ~ const (¢t} 1n p)? (6.8)

which is also in complete agreement with the damping laws found earlier for weak
shocks in a fluid [4,5,7, 8]

7. An isotropic hyperelastic material is defined by the fact that the potential ¢
is a function of the three principal invariants of the strain tensor, as well as of the
Lagrange coordinates in the inhomogeneous body case. Weak discontinuities propagat-
ed in the undeformed domain of an isotropic elastic body will be efther longitudinal

(hia = hng) or transverse (hyn' = 0) [20,21]. An isolated eigenvalue of the
acoustic teasor corresponds to the longitudinal wave, and therefore, the conditions of
Sect, 4.5 are satisfied. In the case of a weak shock of longitudinal type, the quant-
ity v (&, %) is generally not zero, so that such waves damp out in conformity with
(6.8).

A double eigenvalue of the acoustic tensor corresponds to a discontinuity of trans-
verse type, hence (4. 1) does not permit determination of the position of the vector

hys in the tangent plane, The position of this vector, exactly as its absolute value,
is determined successfully from the next equation of the governing system which admits
of two independent corollaries in this case. It follows from (4. 4) that in the case under
consideration the rays tum out to be orthogonal to the successive positions of the front,
and the above-mentioned corollaries can be cbtained by convoluting the second equat-
fon of the goveraing system with the field of normals and binormals to the rays.
Calculations very similar to those in [22] show that the inteasity of the discontinuity in
the second derivatives of the displacement h (£, #) and the angle © (§, t) between
the vector of the discontimuity h;, (8, #) and the principal normal of the ray will
satisfy the relations
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6h mC' ( ,t) ae(a ) — — -

Here ¢, (r) 1is the propagation velocity of weakdiscontinuities of transverse type
in the undeformed domain of an isotropic nonlinearly elastic body, and T (§, #) is
the radius of curvature of the ray (% . The relations (7, 1) agree with the formulas
of classical linear elasticity theory [1, 22] (this was noted in [20] with respect to the
intensity of the discontinuity),

In the case of weak shocks of transverse type being propagated in the undeformed
domain of an isotropic nonlinearly eldstic body, collinearity of the vectors hxu, ki
aiready does not result from the governing system, but just hy,, 8. ) = n (¢, 1
re (5, t)and  hymy (8, %) = b (§, ) g (. 1), where rx and gk are vectom orthogonal
to the unit normal ry, (%, ) to the surface z' = z,' (§,¢) , The goveming system
results in this case in the equation

i, ¢ d1n Jym (zo) ¢, (%,)
2m (o) ¢, _ﬂ.g_}_l +-nm (x5} ¢, at - - .2

< - 1
‘Pwktmn (%0 0) 1 g 00, (riqkrm =72 4T r"‘) k=0

Since ¢¥kimn(; 0) is a linear combination of terms of the form k (z) z/z¥/
z ™" with different combinations of the supemcripts in the case of an isotropic medium,
the last term in (7. 2) vanishes, The law of intensity variation of 2 weak shock of
transverse type consequently turns out to be exactly the same as in acoustic theory
[1,10]. As is known, according to the acoustic theory, the damping rate is slower
than that described by (6, 8).

The author is grateful to A, A, Movchan, as well as to the participants of the
seminar supervised by V, M, Babich, L. A, Galin and N, V, Zvolinskii, for discuss-
ions.
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